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Section 1
INTRODUCTION

The objective of this study is to determine
if a basis can be established for a statistical model of
the distribution of vertical shear (vertical gradient of
horizontal velocity) in the upper ocean. We have approached

this problem in three stages:

® Define as our basic descriptor the probability
distribution of shear squared;

) Determine how well this observed probability
distribution can be described by a known
analytic probability distribution;

] Test the assumptions which would have to
be satisfied to ensure that the observed
samples do, indeed, come from the known
distribution.

In order to examine these questions, we have
analyzed vertical profiles of horizontal velocity in the
upper ocean provided by David Evans of the University of
Rhode Island. The data were collected by a sensor system
called YVETTE.

In Section 2 we briefly describe the YVETTE data.
A more detailed description is given by Lambert et al.
(1980). We also describe the processing which we applied

IVEDAL 4 0o s A




to the YVETTE profiles and the generz! characteristics of
the data. In Section 3 we derive an analytic model for the
probability distribution of mean-square shear. This model
leads us to speculate that the occurrence of shear-squared
values in various depth regimes follows a.)<2 probability
distribution. In Section 4 we test this hypothesis
statistically in two ways. In one we compare directly the
observed shear-squared distributions with suitable X 2-
distributions to assess the acceptability of the hypothesis,
while 1n the other we test how well the statistical (as
opposed to physical) assumptions required for a X2-distri-
bution are satisfied by the data. In Section 5 we describe
an attempt to implement the x2 model by making use of
a possible relationship between N2 and s2 proposed by
Patterson et al.(1981) 1in a companion SAI report. We
discuss the utility of this model and make recommendations
for further improvements.

1-2
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® Section 2
A
rf\ YVETTE VELOCITY PROFILES - OVERVIEW
4
2.1 . YVETTE STATI1ONS
The data on which our analysis is based were
4 obtained by David Evans of the University of Rhode Island in
1975 and 1977 with a vertical profiling instrument, YVETTE.
7 At the time these profiles were measured YVETTE was a
§~1 four-meter-long tube equipped with Neil Brown conductiv- %
] ity, temperature, and depth (CTD) sensors as well as an :
orthogonal pair of acoustic current meters. A detailed
description of YVETTE is provided by Evans et al. (1979).
When deployed, the probe fell freely through the water
‘ t column at a rate of 25 cm s-1., The water temperature,
conductivity, two orthogonal components of horizontal
velocity relative to the probe housing, and the orientation
\ of the instrument relative to the earth's magnetic field
{ ' were recorded 1nternally on magnetic cassette tape. The
.Ji sensors were sampled at a rate of 2.5 times per second to
f yield a vertical sampling interval of approximately |
! 10 cm. The CTD sensors had a resolution of 0.001 mmho L
’ ecm-1, 0.0005°C, and 0.05 dbar, respectively. The j
acoustic current meters had a sensitivity of 0.05 cm s-1 %
. ) and the compass could resolvg orientation to within 39. ﬁ
B , | | g
1 The data set provided to us was filtered to remove 4
variations on vertical scales less than 2 m. The velocity i
s »
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profiles were corrected {.. horizontal drag effects imposed

on the system housing by the large-scale vertical shear.
A description of this processing is contained in Lambert
et al. (1980). The resulting data set should, in principle,
include velocity structure resolved over vertical scales
between 2 m and 100 m.

The data set consists of fifteen stations,
fourteen in various parts of the North Atlantic Ocean and
one in the Pacific Ocean. The position, date, and time of
these profiles are listed in Table 2.1. Figure 2.1 shows
the profile locations.

2.2 VELOCITY DATA PROCESSING

The profiles of horizontal velocity obtained from
Evans consisted of values spaced irregularly in the vertical
(pressure) direction with a typical spacing of one meter.
Qur first step in analyzing shear values was to inter-
polate the irregularly spaced values to a profile of values
at regular intervals. We did this with a cubic-spline
interpolation to produce values of u and v at intervals of
lm. We then performed numerical differentiations over
specified separations. We considered separations, 4z, of 2,
4, 8 and 16 m in this study.

We define shear-squared at depth z as the squared
magnitude of the difference between the horizontal velocity
vector v at depth z + %Az and z -3AzZ, normalized by (r2z)2.
That is

$2(z; 02) = |v(z+34z) - g(z—iAz)lz(AZ)‘2 ’
= (Azu)2 + (Av)2 (2.1)

2-2




Table 2.1
YVETTE STATIONS!

Station Time

Latitude Longitude

Number  (GMT) Date (N) (W) Comment
5 1942 5 Nov. 75 32°19' 64°34' Near Bermuda
8 0225 8 Nov. 75 35°00' 66°30' Sargasso Sea
9 1219 " " "o "
10 1814 9 Nov. 75 38°09' 69°06' Gulf Stream
11 0036 10 Nov. 75 38°05' 69°03' "
12 1312 " 38°15' 69°07' "
18 - 7 May 77 22°47! 70°43' Edge of thermocline eddy
21 —_ 9 May 77 22°27' 70°57' Center of thermocline eddy
23 — 16 May 77 36°24° 67°36' Outer part of GSR2
24 —_ " 36°20" 67°44' Midway along radius of GSR
25 - 17 May 77 36°09' 67°53"' Near center of GSR
NOR 1 — 1973 - -— Norwegian Fjord
NOR 4 _— " —_— — "
NOR 6 - " - - Norwegian Coastal Current
EPOCS36  —  July 79 0°03'  109°57' Data start just below EUCY
1 Adapted from Lambert et al. (1980)
2 Gulf Stream Ring
3 Equatorial Pacific Ocean Climate Study
4

Equatorial Undercurrent




-t

P

el
‘(Q\} ==

| Lol

O

] Z_,;J

4

AT N

i

Ah

I~

40°N

_|gonr

2208

300¢

Figure 2.1 Positions of YVETTE Stations

N e <
- e W e .o . <




[P SRS 4 i -

where u and v refer to velosity components in the east-west
and north-south directions and
-1

iu = [1.1(2'3"4};2‘;- u(z-s.z )JLz (2.2)

<

with a similar expression for 2,v. Since we used non-
overlapping differences, we obtained fewer shear estimates

as we increased the spacing.

Once the Ajzu and Azv values were calculated, we
calculated the depth average of each profile, defined as

N (2.3)
with a similar expression for 7A;v. By subtracting the
average from the individual values we obtained modified data
A u' and A v':

z z
Agu'(zj) = Bpu(z) - du . (2.4)

In this way we removed any linear trend which might have
occurred in the data.

The S2 values used in this study are defined as

S2 = (Azu')2 + (Agv')2 (2.5)

2-5
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2.3 SAMPLE STATION - YVETTE 08

The first station we analyzed was YVETTE 0S8
from the Sargasso Sea. Figures 2.2 and 2.3 show plots
of the data received from URI for this station.® Note the
presen~e of an upper isopycnal 1layer, a sharp pycnocline
below that, and a region of less steep but still increasing
density below that. We have divided the profiles for this
station into three regimes: the surface mixed layer (ML),
the upper thermocline (UT), and the deep layer (DL). The
dotted lines in the figures denote rather subjective bound-~
aries between these layers. The values of Aju and A,V
tend to be highest in the upper-thermocline region where the
Brunt-Vdisdla frequency is highest and lower in the surface
mixed and deep layers. This apparent correlation is ex-
plored in detail by Patterson et al. (1981). We will return
to its implication later in this document.

All of the YVETTE profiles were divided into sub-
profiles in this manner, using divisions established by
Patterson et al. (1981) on the basis of changes in Brunt-
Viisald frequency. We have retained their definitions
of the layers without modification.

* The profiles shown in these figures were taken directly
from data provided by Evans. The actual data points are
located at irregularly spaced depths as mentioned earlier.

2-6
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Shear-squared profiles which we computed by
applying (2.5) to the interpolated velocity profiles from
this station are shown in Figure 2.4. The calculations with
2, 4, 8 and 16 m spacings are all presented.

In order to examine the distribution of values
of S2 we divided the range from S2 = 0 to S2 = maximum
in each profile segment 1nto equi-width bins such that the
range would bke subdivided into 30-40 bins. We then gene-
rated histograms of the number of values falling into each
bin. These were expressed as the fraction of the total
number of vz ics in each profile segment. Histograms for
the three depth regimes of YVETTE 08 are shown in Figure
2.5a-c. The histograms indicate that the data display a
strong preference for low values of S2 compared to the
total range of observed values. The coarse quality of the
histograms for 8 m and 16 m separations is due to the
small number of S2 values in the samples.

2-9
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Section 3
SHEAR DISTRIBUTION MODEL

It is possible to derive a model for a shear
probability density function B(S2;Az) with the application
of a few assumptions about the statistical properties of the
shear field. The assumptions are simple (but not trivial).
In this section we derive such a model and in Section 4 we
apply it to the data.

The basic idea was developed by Bretherton (1969),
He supposed that only one component Ajzu of the vertical
velocity difference was significant and that this differ-
ence represented the sum of the vertical gradients asso-
ciated with a large number of linearly independent, random
internal waves. Thus, by the central-limit theorem, ZzU is
normally distributed, and

B(Au; 82) = (0vV2 1) -1 exp[—é(Azu)zc‘Z] (3.1a)

where the variance

62 = <(byu)2> (3.1D)

and the braces indicate ensemble averaging (or over a very
large number of independent samples).

The density function is defined in the usual way
with

Prob (X<h<ho+d)) = B(rg; Az) d) . (3.2)
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The probability density function for S%(Az) (where sub-
scripts 1 refers to a single component of velocity) is
given by the chi-square density with one degree of freedom:

B(S2;82) = [0 VZ 81 r(3)1-lexp(-35:3-2).*  (3.3)

We extend the analysis to allow two velocity
components to contribute to the mean-square shear.
We assume that the velocity difference vector (pgzu, Apv)
represents the vector sum of velocity differences associated
with a large number of linearly independent random phe-
nomena. Then the Multidimensional Central Limit Theorem
(Loeve, 1960) implies that the two-dimensional proba-
bility density function B( pAzu, AzVv; Az) of the vector
approaches a two-dimensional normal distribution. Thus,

2,-1

B(L_u,8_v;Az) = (2m02 VI-12) |
X exp {-%(l—rz)o_2 (Azu)2 + (sz)2 - 2rju AZV]%
i

(3.4)

where ¢ 2 is as defined in (3.1b) and r is the covariance

r = {Azu AgzVv> o=2

We assume that the wave field is isotropic.
Therefore.

r=20 (3.5)

* T(%) is approximately 1.772 so that the quantity in the
brackets is approximately 2.50 §j.
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Each individual probability density is given by (3.1) so
that the velocity components are normally distributed. The
separability of the probability densities is a definition of
statistical independence. Hence the velocity difference
components Ayu and Ayzv are not only uncorrelated (3.5)
but statistically independent.

It is now straightforward to obtain the proba-
pility density function of S2. The sum of the squares of
n normally distributed, independent random variables with
identical distributions has a chi-square probability
density, with n degrees of freedom (Papoulis, 1965). Thus
S2 has a 2-degree-of-freedom density given by

2y (3.6a)

1 -—

B(Sz;Az) = (202) “ exp (-%Szo

for S2> 0.- The density function in (3.6) is not sharply

peaked for small values of its argument whereas that

in (3.3) is. At large values of its argument, the value
given by (3.6a) is larger than given by (3.3).

We can integrate (3.6a) to show that the expected
value of S2 is

Hg2 = <g2>
(3.6b)
= 202
and that the variance of S2 is
ozz = <s2 - <Sz> > = 404 (3.6c)
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We propose that (3.6a) be tested as a model for
the probability density of mean square shear. Instead of
B(S2; Az) a more useful statistical description is given
by the probability distribution function

32
x2(s? Az)s-f B(s2;Az)ds?
- (3.7)

so that

2

2 _ .2 2.
Prob (S sSO ) = X (SO ;hz).

From (3.6) and (3.7)

2

x2(s%;82) = 1-exp(-35%672) .

(3.8)

Figure 2.5 referred to earlier shows the s2
histogram computed\from data from YVETTE 08 data. Super-
posed on that figure are B(S2; A2) density functions given
by (3.6). In theory, the component variance used in the x2
probability is given by

That is, oi and o% (assumed identical) are the variances

of the population distributions of the shear components.
N

In practical terms, however, we used the estimate ;2 given

by

N\ N\
5,5 D
o = 4(o2 + %) . (3.9)

the average of the estimates of the variances of the two
components of the sample, since the two component variances
are not exactly equal.
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t The definitions of oxz and oyz lead to

A N N
2 1 2 1 2
0 = 3| — (Au, /Lz) + — (bv./bz)
’ N-1 1 N-1 .
' i=1 i=1
(3.10)
where N is the number of samples in the depth regime. Note

that the means of the shear components have been removed
(i.e.,Auiare equivalent to AuiOf 2.4).

Combining (3.10) and (2.5) leads to:

1 ZN:[(Au /az)2 + (bv /Az)z]
o ‘N—-‘ e i i

N
= % m Ul
i=1

(3.11)
g2




Section 4
SHEAR DISTRIBUTION ANALYSIS

In Section 3 we derived a y 2 model for the dis-
tribution of upper-ocean mean-square shear. In this section
we test the applicability of that model. OQur approach makes
use of the tools of hypothesis testing, in particular, a
Kolmogorov-Smirnov '"goodness-of-fit" test.

We characterize the appropriateness of the model
in terms of the critical level of significance (defined
below), which we can attach to the hypothesis that the S2
values are drawn from a population which has a x2 distri-
bution. We estimate the population variance as the variance
of the sample. A goodness-of-fit test for a hypothetical
distribution in which some significant aspect of the
hypothesized distribution is calculated from the sample
is a-”conservative" test. This means that the test results
are biased toward higher critical levels of significance.*

We also describe the results of (nonconservative)
statistical tests performed on the data to ascertain
whether the conditions on the velocity field necessary for
a X2 shear distribution were met. We applied a Cox-Stuart
trend test for randomness of the samples of the individual

* Conservative here implies that since the results are
biased toward higher apparent levels of significance we
are less likely to make a decision to reject a stated null
hypothesis. :
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components Azu and Ayv; a Lilliefors test for normality

of the components; a X2 test for mutual independence of
the components; and a Smirnov test for identical distribu-
tion functions of the two components.

A review of hypothesis testing is presented in
Appendix A.

4.1 GOODNESS~OF-FIT TESTS FOR SHEAR

4.1.1 Critical Levels

In order to quantify the degree to which shear
distributions for each profile segment can be represented
by a X2 distribution (conservatively, with variance set to
the sample variance), we applied the Kolmogorov goodness-of-
fit test. The sole assumption required by this test is that
the values of S2 be random.

The test consists of comparing the observed prob-
ability distribution G(S2), calculated from the sample, to
the hypothesized distribution X2(S2) with 02 estimated
by 02. We obtained the observed probability distribution
simply by ordering S2 values from low to high (index j) and
calculating the cumulative sum of values less than or equal
to a given value:

=0, x, > x, . (4.1)

/\
L]
The corresponding hypothetical probability is X2(S{“;o?).
The test statistic is the maximum difference between these

two functions at any Sj:
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T = sup G(S%) - XZ(S%) (4.2)
%

where "sup" refers to the maximum value. The empirical T
is then compared to tables of quantiles of T predicted from
a postulated T distribution. Table B.1 shows the quantiles
of the Kolmogorov test statistic. The quantity n is the
number of points in the sample and o (=l1-a) is the "confi-
dence level".

We define let T; be the test statistic associated
with one individual test. The first quantile value higher
than T; is associated with the approximate critical con-
fidence and significance levels, p and 4. For example,
if the value of T;, based on a sample of 30 points, were
0.200, then 0.8 < 5 ¢ 0.9 and 0.2 > g> 0.1. On the other
hand, if T; for the same case were 0.288, then 0.98 < f <
0.99 and 0.02 > a > 0.01.*%

Figure 4.la-c¢ shows the graphical comparison
between the observed and the calculated X2 cumulative
probabilities for YVETTE 08. The statistic T9 is the
greatest separation between the two functions along a
vertical line corresponding to one of the observed values of
s2, In all the cases depicted & was at least 0.20. Thus
the model falls within the 80% confidence interval of the
observed distribution.

* The quantity 5 = 1- jdefines the confidence level around
the empirical distribution at which the model distribution
falls. A value of 0.1 <a< 0.2 implies that the model falls
within the 80 to 90% confidence intervals.
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Only four stations could divided into three
depth regimes. In the other eleven the mixed layer was
not well established. In some cases, the layer was so thin
that shear values calculated over 8m and/or 16m produced
only 4 or 5 values. The test was not applied toAsamples
with fewer than 6 elements. Table B.2 contains the a values

calculated for all stations.

A breakdown of these results by depth, separation,
and & range (Table B.3) shows that over 75% of the samples
have a critical level of 0.20 or higher. Correspondingly,
the model falls within the 80% confidence interval for 75%

of the samples.

The conservative bias of the goodness-of-fit
test could have been avoided by using the x2 goodness-
of-fit test rather than the Kolmogorov test. However, that
test has its own set of drawbacks. For one thing, the X 2
test assumes a sample size large enough that the test
statistic is governed by a x2 distribution. This is prob-
ably not the case for many of the regimes studied here. In
contrast, the Kolmogorov test is effective for small sample
size. Secondly, the x2 test depends on breaking the
sample up into bins of arbitrary width and, especially with
a small sample, the results are sensitive to bin size.
Lastly, quantiles of the X2 statistic are not known with a
great deal of confidence (Conover, 1980). This can reduce
the usefulness of the test. For these reasons we chose to
accept the overestimated values predicted by the Kolmogorov
test and assume that the errors involved are lower than
those inherent in the use of the x2 test for small sample

size.
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4.2 TESTING MODEL ASSUMPTIONS

As we mentioned in Section 3, the reasoning which

x led to the hypothesis of a xz distribution was based on
physical assumptions about the nature of internal wave-

induced shear. We can apply another set of statistical

3 tests to the distributions of Ajzu and A4,v in order to
test how well these satisfy the assumptions. This second
approach provides an independent test of the X2 hypothesis.

3 We have assumed in our model that the velocity
' difference components meet the following assumptions:

° 8,u and 4,v occur randomly;
] ° they are distributed normally;
® they are independent quantities;
) they come from identically distributed pop-
uations.

The reasons for these assumptions were discussed in Section
3. In this section we will show the statistical techniques
we used to determine how well our samples satisfied them.

sl St

4.2.1 Cox and Stuart Trend Test

N

We did not attempt to assess directly the random- 4
ness of the shear component samples. Instead, we tested to 1

see whether or not a trend existed using the Cox and Stuart !
Test. A sequence of numbers will have a trend if values é
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later in the sequence are uniformly higher or lower than
earlier values. If no such tendency exists, then the sample

is probably made up of random, independent values.

The Cox and Stuart test consists of grouping a
sequence of variables, of length n, into pairs (xj, Xj+kx),
where k=n/2 if n is even and k=(n+1)/2 if n is odd. The
pairs are tested to see which value is larger. If we asign
a "+" to pairs in which xj4x > xi and a "-" to pairs in
which xj4kg ¢ xij, then the test statistic is T, the
number of pairs which can be denoted by a "+".* Our null
hypothesis is that the probability of observing a "+'" is the

same as the probability of observing a "-".

The range of acceptance is bounded according to
m-t < T < t, where m is the number of pairs excluding ties
and t is the greatest number of +'s which would be observed
at level 4 based on a probability of 0.5. (See Conover
(1980) for the technique for calculating t.) If T falls
outside the bounds, then the hypothesis is rejected.
The results of this test are shown in Tables B.4 and B.5.
Tables B.6 and B.7 show the breakdown by regime, separation,
and 4. A total of 91 4Ayu profiles and 98 A,v profiles (out
of 114) satisfied the test at ¢ > 0.10. Somewhat more A,v
profiles than Ajzu profiles satisified at 3 levels above 0.05,
but both types of profiles can definitely be said to be free

of trends.

* Ties, where xj4x = Xj, are disregarded and the total
number of pairs is reduced by the number of ties.
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4.2.2 Lilliefors Normality Test

In order to evaluate whether the shear com-
ponent samples come from normal distributions, we applied
the Lilliefors test. The test is performed not on an

original sequence xj, but on a normalized sequence.
z; = (x5 - ii)/)\z i=1,2,...,n

where xj is the sample mean and A2 the sample variance.
The distribution of this normalized sequence is compared
against a normal distribution with zero mean and unit
variance. If we define F(z) as our hypothesized normal
distribution and S(z) as the observed distribution of the
adjusted sequence, then the test statistic is the same as
for the Kolmogorov Test:

sup

T =, |F(z) - S(2)].

The Kolomogorov tables cannot be used to evaluate this
test, however; instead, special quantiles must be used to

make a decision.

The critical levels obtained by applying this
test to YVETTE stations are shown in Tables B.8, and B.9.
The distributions of § values are listed in Tables B.10 and
B.11. The test results showed that the normality assumption
was satisfied by nearly all profiles (95 of the Azu and 96
of the Azv) at levels above 0.10.
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4.2.3 Chi-Square Independence Test

The chi-squared independence test assumes that
we have a sample of length N whose elements can be sorted
by two criteria. In our application the two criteria are
whether a value comes from Ajzu or Azv and which of a
number of bins of width AS2 a shear component value fits.
If we break the range of shear into C bins, then each

observation can only fall into one of 2C categories.

The test statistic is based on the number of
entries in each category. We can envision the possible
choices as a matrix with 2 rows (one for each shear compo-
nent) and C columns (one for each shear range bin). Each
possible category can be denoted by indices i and j, where
i=1 or 2, j=1,2,...., C. The number of observations in
each bin can be denoted as 0jj. For each row we define:

C
Ri = 013’
Jj=1
and for each column we define:
2
C; "'Z Oi5°
i=1

If we also define:

-1
Eij = Ri Cj N

then the test statistic is defined as

2

C
ED VD VIRCH N L

i=1  j=1
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The assumption in tnis test is that T is governed by a
chi-square distribution with (C-1) degrees of freedom.x*
If T falls below the & level quantile then we can accept the
hypothesis that an element occurs in row 1, column J
independently of an element in row 2, column j and that
this is true for all j. For our case this is equivalent to
saying that the Au/Az values occur independently of the
Av/bLz values.

The critical levels obtained by applying this
test to YVETTE profiles are listed in Table B.12 and the
a4 distribution in Table B.13. Nearly all of the profile
pairs (112) satisfied the independence test at g levels
above 0.10.

This test does not seem subject to the bin-
width sensitivity mentioned when discussing the chi-square
goodness of fit test. We presume that this is because two
observed distributions are being compared with one another
rather than one observed distribution with a hypothesized
distribution. Nevertheless, the number of bins was never
greater than one-half the number of samples, and in most
cases was less than one-third.

4.2.4 The Smirnov Identical Distribution Test

The final assumption to be tested is that the two
shear components are governed by identical distributions.

* Actually with (number of rows-1).(number of columns-1)
degrees of freedom. In this application, with only two
rows, we find (C-1) degrees of freedom.

4-12

T T2

Lowt” ORI,




The test chosen, the Smirnov test, is of the Kolmogorov -
type in which the test statistic is the maximum separation
between two observed distributions. If Sj(x) and Sp(y) are
empirical distributions of quantities x and y, and F;(x) and
Fo(y) are their (unknown) hypothesized distributions, then
we can test the hypothesis Fj(x) = Fo(y) by generating the
statistic
T ="50181(2) - Sy (2)]

for z's in the range of all possible x's and y's. I£f T
is less than the appropriate quantile, then the hypothesis
can be accepted at level &.

Note that S;(x) and S3(y) do not have to have
the same number of samples in order to apply this test.

However, our samples are of equal length.

b 4 The critical 1levels obtained for YVETTE data
are listed in Table B.14, and their distribution is listed

: ] in Table B.15. Again, nearly all of the profile pairs (113)
‘ may confidently be said to come from identical distribu-
tions.

.- 4.2.5 Summary of Assumption Tests

The results of these four tests show that we are
statistically justified in accepting the hypotheses based
on the assumptions; these assumptions, in turn, led to the
postulated x2 distribution for shear squared. That is,
we can assume with a high level of confidence that the shear
components, Azu and Azv, do come from distributions which

g e 95Ty,
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are random, normally distributed, mutually independent, and
identically distributed. Table 4.1 shows the percentage of
each set of samples which have specific minimum critical
levels. For example, the Cox-Stuart Test on A4 jzu was
satisfied by 69% of the samples at a>0.20, and 80% at
a>0.10. These results lead us to believe that:

e the agreement between S2 distribution and
¥2 distributions based on sample variances is
significant, and,

° that because the assumption tests are not
biased, we could extend the previous statement
to indicate that S2 values do seem to come
from a X2 distributed population.
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fl Table 4.1 .
Percentages of Samples which satisfy
® assumption tests at three 8 levels.
*
Test & = 0.20 0.10 0.05
1 Cox-Stuart A u 69% 80% 87% |
. . ’
Cox-Stuart A,v 75% 86% 93%
Lilliefors Ajzu 75% 83% 94%
[}
{
} Lilliefors Agzv 80% 84% 92%
x2 Independence 93% 98% 99%
| ®
,‘ Smirnov 96% 99% 100%
]
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Section 5
MODEL APPLICATION

Thus far we have described a model for the

distribution of shear in several depth regimes of the upper
ocean and established a statistical basis for accepting the
model. The final question which must be addressed is how to
apply the model.

The key parameter in the model is gb, the variance
of the velocity component differences based on observations.
If we can relate this parameter to large scale, more easily
observed quantities, then we can develop the S2 probability
distribution that we seek. One parameter which can be
obtained with relative ease is N2, the Brunt-Vaisali
frequency at depth in the water column. Since we divided
the YVETTE shear profiles into regimes distinguished by
changes in N2, we examined the possibility of obtaining
values of 02 through some correlation between N2 and S2.

Patterson et al. (1981) have analyzed the same
YVETTE data that we used and have reached some conclusions
about the relationship between N2 ?nd s2, They showed
that if N2 and S2 are computed over 2 m differencing
intervals, then the ratio of Eﬁ to §2 (where the overbar
indicates depth averaging as before) varies between 0.5
and 3.3 in the upper thermocline and deeper layers (Figure
5.1).
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Figure 5.1 Ratio of N2 to gg (based on 2 m differencing

intervals) versus station number for the
different stratification regimes (from Patterson
et al., 1981).
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The observation that this ratio is reasonably
well-behaved motivated us to estimate Hg2 as

g2 = k N2, (5.1)

where k is an order unity proportionality constant. We
chose a value of k=1 as a first approximation. We then
estimated the sample component variance from (3.6b) as

=iN : (5.2)

We tested the performance of the ¥ 2 model based
on (5.2) by repeating the Kolmogorov goodness-of-fit test
for ten of the YVETTE stations. The values of the test
statistics, T, are shown in Table 5.1, along with the
statistics, Tg,201 which is the maximum T value which
would have resulted in a fit at level of significance
@ = 0.20. If we had been testing a hypothesis of the form

Ho = "S2 occur according to a X2 -distribution
with variance given by (5.2),"

then these results would not be very impressive. Only 6 out
of 20 profiles produced T values sufficient to result in
acceptance at a comfortably high significance level of
&.2 0.20. On the other hand, the largest calculated T in
Table 5.1 is 0.284. The quantity T is defined as the maxi-
mum difference between the observed probability distribution
and the x2 distribution. Thus the model-predicted proba-
bility of occurrence (expressed as percentage of occurrence)
of S2 values less than specified levels differed from the
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° Table 5.1

Test Statistics for the Kolmogorov Test. Te;\t
- statistics, T, obtalned by estimating X 2(s?
based on (5.2). The calculations were only
carried out for Az=2 m. Tp,20 1s the statistic
which would specify rejection at level 0.20.

STATION REGIME T To. 20
YVETTE 05 UT 0.284 0.151
DL 0.114 0.081
08 UT 0.065 : 0.138
DL 0.174 0.096
- 09 UT 0.079 0.102
: DL 0.114 0.102
10 UT 0.062 0.126
DL 0.261 0.084
) 11 UT 0.161 0.130
DL 0.183 0.084
12 UT 0.178 0.139
DL 0.190 0.079
18 uT 0.231 0.111
DL 0.182 0.091

21 uT 0.183 0.098 Z

DL 0.075 0.103 :
: 23 UT 0.138 0.145
¥ DL 0.145 0.078
H 24 uT 0.260 0.187
k PL 0.262 0.296
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observed probability by no more than 30% in any of the
profiles tested. And in 75% of the cases the difference
was less than 20%. These figures serve to indicate the
degree of confidence that the user can place in predictions
from the statistical model used in this manner.
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Section 6
SUMMARY

We have described a statistical model for the
distribution of S2 values in different depth regimes in
the upper ocean. The model indicates that a x2 distribution
with variance computed from the average S2 in the sample
is a good approximation to the observed distribution. The
model is physically reasonable and has been verified by
statistical analysis of shear profiles measured at 15
different YVETTE stations.

The key to translating this model into a useful
tool for future study lies in developing a method of
estimating the mean value of Sz, USz, in a depth regime
from easily measured oceanic parameters. A simple test,
based on results of an independent analysis of YVETTE data,
consisted of estimating ¥S2 from the mean Brunt-Viisald
frequency in the regime. This test showed that such a
simplified approach to using the statistical model could
yield a cumulative shear distribution which agreed with the
observed distribution to 30% or better. This particular use
of the model is restricted at present to shear values
obtained from differences over two meters.

The reasonable success of the X2 model when
combined with a fairly primitive scheme for estimating
the parameter needed by the model leads us to suggest
further study. This would include examination of more S§2
data sets, both vertical profiles and time series from
vertically spaced current meters. We would also need

6-1




to examine more extensively the nature of the N2-S2 rela-

tionship over various vertical scales. In particular,
it appears (Patterson et al., 1981) that the relationship
between EE and 55 may be less well defined at larger
separations. This would of course, reduce the effective-
3 ness of the model over these scales.
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APPENDIX A
HYPOTHESIS TESTING

It is possible to employ statistical tests to
quantify the degree of confidence which can be assigned to a
hypothesis such as '"S2 comes from a X2 distribution". To
do this we establish a null hypothesis, H,, regarding some
characteristic of the data set being eéxamined:

H, = "the hypothesis being tested is true."

We then use the data to produce a test statistic, T, whose
value will allow us to either reject or not reject Hg.
Notice the choice of words in the last sentence. If we

reject Hgy, we are in effect stating '"the hypothesis is

false." But if we do not reject H, we are not saying
“"the hypothesis is true." Instead, we are saying ''the
hypothesis cannot be proven false.'" *We must allow for the

possibility that a larger sample might lead us to reject
Hy . Tests of this type are rejection tests in that we
can only reject or not reject, but never accept Hy without
reservation. It is conceivable, for example, that, based
on the analysis of a single data set, two mutually
exclusive hypotheses could both fail to be rejected. A
detailed description of hypothesis testing techniques
is presented by Conover (1980). We present an outline
here.

Hypothesis testing is subject to two types of
error:

® rejecting Hy, when Hy is actually true (Type I
error), and




~
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e accepting H, when Hy is actually false (Type II
error).

We can quantify approximate probabilities of
making these errors based on a given sample. We define a ,
the level of significance, as the maximum probability of
making a Type I error, and & as the probability of making a

Tvpe II error.

We want both o and 3 to be as small as possible.
Unfortunately, for a fixed sample size, decreases in o
are usually accompanied by undesirable increases in B.
That is, if we set up a test which tends to minimize the
probability of rejecting a true null hypothesis, we increase
the chance of accepting a false null hypothesis. The only
way to reduce both o and B8 is to increase the sample size
(until eventually the sample encompasses all members of the
population being studied and all tests are exact). Only if
there is a simple alternative hypothesis to Hgy can £ be
estimated. This is not the case in general.

The rationale behind the level of significance
can be illustrated by a simple example. Suppose we have
a finite sample of n random independent observations of
some quantity x from which we compute a given estimator T.
We have reason to believe that the true value T (given
infinitely many observations) of the parameter being esti-
mated is To. Thus our hypothesis Hy is T=T,. Even if
T=To, the sample value T will not equal Tgo. We assume
that a sample value T has a probability density distribution
B(T); then we can use this distribution to estimate the
pr -ability of observing any value of T given that H, is

true.




Figure A-1 shows a schematic probability density

which assumes T=T,. The test statistic frow a single
test, T;, falls some distance from T,. If T; is so far
from T, that its probability of occurrence is very small,
we decide that Hy should be rejected. In order to establish
criteria for our decision we decide on upper and lower
limits Ia/z and Il-a/Z’ which define a region of acceptance.
These I%a are chosen such that the probabilities of values
from the distribution falling beyong these limits are

Prob (I < Ty 3.) = 3a (A.1a)

and

Prob (T > Ta,) = 2a. (A.1b)

Thus the probability of T falling outside the range defined
by these limits is a. We set o small; then if we do observe
such a T we can be confident that we have only a low prob-
ability of being wrong by rejecting H,. o is called
the "level of significance"” of the test and the range of T
for which the hypothesis will be rejected is called the
"region of rejection."” If Hy is true, the chance that Ty
will fall " in the range of rejection is just o; thus o is the
probability of rejecting a true null hypothesis (Type I
error).

We can also define a second quantity, &, which,

we refer to as the critical level of significance. This
is defined as the smallest significance level at which
the hypothesis would be rejected for a given observation.
This is defined by

Prob (T > T1) =a/2 , (A.2)

A-3
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Figure A.1

Schematic probability density of T. The
double cross-hatching indicates the area
of rejection defined by o . The single-
and double-cross-hatching together indi-
cate the critical area defined by g.
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if Ty > Ty, and a similar definition if T; < T,. This level
is also illustrated in the figure. If, as illustrated,
a > o, we have the situation in which the level of signifi-

® cance criterion is more than éatisfied. Thus @ can be
looked at as a measure of the robustness of the test.
As o increases, the confidence with which we can decide not
to reject Hy increases.

?

It is important to notice that o is arbitrarily
defined by the tester, while a is defined by the sample
being tested. We can require that the test be satisfied at

' some small level o. If we do this, we are taking the point
of view that the sample must have every reasonable opportun-
ity to pass the test and that we want to minimize our
chances of rejecting a true H,. Or we can let the sample
indicate how well or poorly it satisifes the test by means
of G . This way, our point of view is that we are less
concerned with the possibility of rejecting a true hypoth-
esis than we are with assessing the certainty with which we

make decisions. We choose to use o in our analysis.




APPENDIX B

STATISTICAL RESULTS BASED ON
TESTS OF YVETTE DATA
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Table B.1
Quantiles of the Kolmogorov Test Statistic*.

Two-Sided Test

p=.00 .90 95 98 .9 p=80 .90 .95 -.9 K
mes] 9500 .950 975 .990 .995 am=2l (226 259 287 321 .34
‘2 684 776 842 900 .929 2 221 253 .28 M4 3
3 565 .636 .708 .185 .89 23 216 247 218 307 3%
4 493 565 .624 .68% .134 24 .22 242 269 301 .3
S 44T 509 563 627 -.669 25 208 238 264 .29 .10
‘6 410 468 .519 577 .617 26 204 233 259 290 .31}
7 .381 436 483 538 .57 27 200 229 254 284,308
§ 358 410 454 507 542 28 197 228 250 279 L300
9 339 387 .430 .480 .513 29 193 221 246 218 298
10 323 369 409 457 489 30 1% 218 242 270 290
11 308 .352 .391 437 468 i 87 214 L2380 266 288
12 .296 .38 378 419 449 32 a8 211 24 262 a2
13 285 .328...361 404 432 33 .82 208, 231 258 a2M
14215 314749 390 418 C 34 L1790 208 227 .24 AT
1S 266 .304 338 377 404 35 AT 202 224 250 269
16 .258 ° .295 ~i327 (366 .392 36 .17 199 221 .47 .26$
17 .250 .286 .318 .358 .381 37 A72 96 218 244 262
13 244 279 309 346 3TM 38 07 %4 218 240 288
19 237 271 300 337 .36) 39 .68 197 213 238 .2s%
20 .232 265 .294 .32% .52 4 165 189 210 238 252
Approximation o7 12 136 2 16

fora> 40 Vg \/u a L Va

The entries in this table are selected quantiles
of the Kolmogorov test statistics T. Reject Hy at the
level o if T exceeds the 1-, quantile given in this table.
These quantiles are exact for n  40. The other quantiles
are approximations that are equal to the exact quantiles in
most cases. A better approximation for n > 40 results if
(n+ VF;7T6)5 is used instead of Vn in the denominator.

Re @i aes A i




;
]
' Table B.2
Kolmogorov Goodness-of-Fit Test Results
| Critical levels* for the three depth regimes for all 15 YVEITE stations.
]
3 Depth Regime = ML uT DL
‘ Separation = 2m 4 8 16 2 4 8 16 2 4 8 16
E
' Station
i 05 . <0.01 0.20 -- -- | €0.01 0.02 0.20 | 0.20 0.20 0.10 0.20
08 0.20 0.20 0.20 0.20| 0.20 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
09 0.20 0.20 0.01 -- 0.20 0.10 0.10 0.20 | 0.20 0.20 0.20 0.20
10 -— - - — 0.20 0.20 0.20 0.20 | 0.20 0.20 0.05 0.10
11 - —_ - - 0.02 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
12 - - - — 0.20 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
‘ 18 - _— - -— 0.20 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
21 — - - - 0.01 0.02 0.05 0.20 j<0.01 0.20 0.20 0.20
‘ 23 -— - -_— — 0.20 0.20 0.20 0.20 |<0.01 <0.01 (b.Ol 0.02
) | 24 — - - - 0.10 0.20 —_— - 0.20 0.05 - —
R | 25 - - - _— 0.20 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20 :
i | NOR1 ’ 0.20 0.20 -- - [0.05 0.20 0.02 —
’ NOR4 - =~ ~- —]02 — — - |02 0.20 0.20 -- )
: NOR6 — — = == |40.01 <0.01 <0.05 0.20 | —~ = — = = - :
EPOCS6 0.10 0.20 - - 0.20 0.20 0.20 0.20 | 0.02 0.20 0.20 0.20 ‘
4 4 2 41 E 13 12 13 14 14 13 Ll §
1 11 52 52 ;
S * & values listed are not exact. Table A.1 shows five }
' levels: 0.20, 0.10, 0.05, 0.02, 0.01. Thed value listed Py
in this table indicates the approximate range of 4. For
example, a value of 0.10 implies 0.10 < & < 0.20. - !




Table B.3
Kolmogorov Goodness-of-Fit Test Results

Distribution of critical levels by @ range for depth
regimes and separations from all YVETTE stationms.

6 0.2 0.2>60.1 0.1>§>0.05 0.05>§0.02 0.02>4>0.01 §<0.01 TOTAL

L‘ pz= 2m 2 1 0 0 0 1 4

' = 4m 4 0 0 0 0 0 4

1 ML - &m 1 0 0 0 1 0 2

| =16mn 1 0 0 0 0 0 1

)

pz= 2n 10 1 0 1 1 2 15

= 4m 10 1 0 1 1 0 13

ur = 8n 9 1 2 0 0 0 12

o = 16m 12 0 0 0 0 0 12

Az= 2m 10 0 1 1 0 2 14

= 4 12 0 1 0 0 1 14

S DL = &m 9 1 1 1 0 1 13

4‘ =16m. 9 1 0 1 0 0 11
f TOTAL 89 6 5 5 3 7 115 ]

"
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Table B.4

Cox~-Stuart Trend Test Results

Critical levels for the Aju distri-
butions for all YVETTE stations.

DEPTH REGIME = ML UT DL
SEPARATION = 2 4 8 16 2 4 8 16 2 4 8 16
YVETTE 05 | 0.20 0.10 -- -—- | 0.20 0.20 0.10 — | 0.20 0.20 0.20 0.20
08 | 0.20 0.01 0.20 0.10[<0.01 0.05 0.01 0.05| 0.20 0.20 0.20 0.10
o { 0.20 0.05 0.20 - | 0.20 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
10 — = — —1o.01 <0.00 0.10 0.05|<«.01 <.01 0.02 0.02
1 - — - — {<w.00 0.05 0.05 0.02| 0.02 0.20 0.10 0.20
12 - — — — 102 0.20 020 0.20 | 0.20 0.20 0.20 0.20
18 - = — - 1o0.20 0.20 0.20 0.20 ] 0.02 0.20 0.20 0.20
21 - — — - |<.01 0.20 0.10 0.20 | 0.10 0.20 0.20 0.20
23 - — — -1 o0.20 0.05 0.20 0.20 | 0.20 0.20 0.20 0.20
2 - — — —-1]o010 020 — -— |02 02 -— --
25 - — — —1|o0.20 0.2 0.20 0.10] 0.20 0.20 0.20 0.20
NOR 1 - = — —1o020 020 -~ — |02 0.20 02 -—
4 - - — —1010 — -~ -— }o02 02 -— -
6 - == — 102 00502 02| — — - -
EPOCS 6 | 0.20 0.10 -- — | 0.20 0.20 0.20 0.20 | 0.01 0.20 0.20 0.20
B-4
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Critical levels for the Ayv distri-

Table B.5
Cox~-Stuart Trend Test Results

butions for all YVETTE

DEPTH REGIME = ML UT DL
SEPARATION = 2 4 8 16 2 4 8 16 2 4 8 16
YVETTE 05 0.20 0.10 -- -- | 0.20 0.20 0.05 -- |0.20 0.20 0.20 0.20
08 0.05 0.20 0.10 0.20 | 0.20 0.20 0.20 0.05 | 0.20 0.20 0.20 0.10
09 0.20 0.20 0.20 -- | 0.20 0.20 0.10 0.20 | 0.20 0.20 0.20 0.20
10 — == - - ]0.05 0.20 0.10 0.20 |0.20 0.20 0.20 0.20
11 — — — — l0.20 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
12 — —= - - |o0.10 0.20 0.20 0.02 {<0.01 0.10 0.10 0.05
18 — — - | 0.20 0.20 0.20 0.10 | 0.20 0.20 0.20 0.20
21 —~ =— - - |o0.20 0,20 0.20 0.20 | 0.20 0.20 0.20 0.20
23 —~ — o= - |o0.20 0.20 0.20 0.02 | 0.20 0.20 0.20 0.20
24 - — —= — l0.20 020 - -- |o0.20 0.02 — -
25 — == = - |0.20 0.05 0.20 0.10 { 0.20 0.20 0.20 0.20
NOR 1 —~ = =~ - ]0.2 0,02 — -- |0.02 0.20 0.20 —
4 —- —= o= —= 1010 —~ - — |0.20 0.20 — -
6 — == = - 10.20 0.20 0.20 0.20 | — =~ @— -
EPOCS 6 0.20 0.10 - -- [<0.01 0.05 0.05 0.02 { 0.20 0.20 0.20 0.20
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Table B.6
Cox-Stuart Trend Test Results

Distribution of critical levels for A u by & range for depth
regimes and separations for all YVETTE stations.

8>0.20 0.20>80.10 0.10>620.05 0.05>§>0.02 0.02>8>0.01 3 <0.01 TOTAL

Az=2 4 0 0 0 0 0 4
4 0 2 1 0 1 0 4
ML 8 2 0] 0] 0 0 0] 2
16 0 1 0 0 0 0 1
A2=2 9 2 0] 0 1 3 15
T 4 9 0 4 0 0 1 14
8 7 3 1 0 1 0] 12
16 7 1 2 1 0] 0 11
Lz=2 9 1 0 2 1 1 14
DL 4 13 0 0] 0 0] 1 14
8 10 1 0 1 0 0 12
16 9 1 0 1 0 0 11
TOTAL 79 12 8 ) 4 6 114
B-6
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Cox~Stuart Trend Test Results

Table B.7

Distribution of critical levels for Aju by & range for depth
regimes and separations for all YVETTE stations.

620.20 0.20>80.10 0.10>6>0.05 0.05>8>0.02 0.02%>0.01 4&<0.01 TOTAL
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11
11

12
12
11
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.) Table B.8
' Lilliefors Normality Test Results

Critical levels for Azu profiles from all YVETTE stations.

DEPTH REGIME = ML Ut DL
f SEPARATION = 2 4 8 16 2 4 8 16 2 4 8 16
YWETTE 05 | 0.01 <0.01 — - |0.01 0.01 0.20 - | 0.20 0.20 0.20 0.20
08 | 0.5 0.0 0.20 0.10 |[0.05 0.20 0.0l 0.05| 0.20 0.20 0.20 0.20
09 | 0.20 0.10 0.10 - }0.05 0.20 0.20 0.20 [ 0.20 0.20 0.20 0.20
10 —~ == -~ -~ |0.20 0.20 0.20 0.20| 0.20 0.20 0.20 0.20
| 11 —~ = ~—~ — |0.10 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
12 {— — - — |0.05 0.20 0.20 0.20 | 0.20 0.20 0.20 0.10
_ 18 - - -~ — 10.20 0.20 0.20 0.20] 0.20 0.20 0.20 0.20
| 21 — - - — |0.05 0.05 0.20 0.20 | 0.20 0.20 0.05 0.20
%‘k 23 —~ — = — |0.20 0.20 0.20 0.20 {<0.01 0.10 0.05 0.20
4 24 —~ = — - 100 020 — -- | 0.20 020 — -
& 25 — — -~ — o005 0.20 0.05 0.20| 0.20 0.20 0.20 0.20
3 NOR 1 — — -~ — o020 020 — - |o0.20 020 020 —
% 4 - ~- — = l020 — -~ — |02 02 — -
3 6 - = == = |0.20 0.20 0.10 0.20| = ~= o= -
EPOCS 6 | 0.20 0.05 -- -- |0.20 0.20 0.20 0.20 ] 0.10 0.20 0.20 0.20
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Table B.9
Lilliefors Normality Test Results

Critical levels for A ,u profiles from all YVETTE stations.

DEPTH REGIMES = ML ur DL
SEPARATION = 2 4 8 16 2 4 8 16 2 4 8 16
) .
YVETTE 05 | 0.01 0.05 -- -—- | 0.02 0.20 0.20 -- | 0.20 0.20 0.20 0.20
08 |o0.20 0.20 0.20 0.10 | 0.20 0.20 0.20 0.01 | 0.20 0.20 0.20 0.0l
09 [0.20 0.20 0.10 -- | 0.20 0.20 0.20 0.20 | 0.20 0.20 0.20 0.20
) 10 — — — — | 0.20 0.20 0.20 0.10| 0.20 0.20 <0.01 0.20
11 — =~ —  — | o0.00 0.05 0.20 0.05| 0.20 0.20 0.20 0.20
12 — — —  — | 0.20 0.20 0.20 0.20| 0.20 0.20 0.20 0.20 :
18 — — — — | 0.20 0.20 0.20 0.05| 0.20 0.20 0.20 0.20 i
) 21 — — —  — | 0.00 0.20 0.20 0.20| 0.05 0.20 0.20 0.20 J
23 — =~ —  — | 0.20 0.20 0.20 0.20 |<0.00 0.10 0.20 0.20
24 — = = — | 02002 — — |02 02 — - {
25 - — ==  — | 0.20 0.20 0.20 0.20| 0.20 0.20 0.20 0.20 |
» NR 1 - — — -] 010 0,20 — -- | 0.20 0.20 0.20 -— 1
4 —_ = == | 020 = —~ - ]0.2 020 - -- ’
6 - == o= - |<0.01 0.10 0.05 0.20| - — - -
EPOCS 6 |0.20 0.20 — -- | <0.05 0.20 0.10 0.20| 0.20 0.20 0.20 0.20 5
:
)
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Az=2

16

! A2=2
- UT 4

16

|
R !
),
P Az=2

DL 4

16
TOTAL

Table B.10
Lilliefors Normality Test Results

Distribution of critical levels for Ajyu by § range for

depth regimes and separations for all YVETTE stations.

620.20 0.20>320.10 0.10>6420.05 0.05>6>0.02 0.02)%>0.01 4§<0.01 TOTAL

2 0 1 0 1
0 1 1 0 1
1 1 0 0 0
0 1 0 0 0
7 2 5 0 1
12 0 1 0 1
9 1 1 0 1
10 0 1 0 0
12 1 0 0 0
13 1 0 0 0
10 0 2 0 0
10 1 0 0 0
86 9 12 0 5
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Az=2

ML 8
16

hz=2
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16
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DL 4

16
TOTAL

Distribution of critical levels for Ayzv by & range for
depth regimes and separations for all YVETTE stations.
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Table B.12
xz-Independence Test Results

Critical levels for profiles from all YVETTE stations.

S e TR T T

;
&8 DEPTH REGIME = ML uT DL
;
; SEPARATION = 2 4 8 16 2 4 8 16 2 4 8 16
YVETTE 05 | 0.10 0.25 — -- | 0.25 0.25 0.25 — [0.25 0.25 0.10 0.25
08 | 0.25 0.25 0.25 0.25 | 0.25 0.25 0.25 0.25|0.25 0.25 0.25 0.25
09 | 0.25 0.10 0.25 — | 0.25 0.25 0.25 0.25|0.25 0.25 0.25 0.25
10 — —~ - - |o0.25 0.25 0.25 0.250.25 0.25 0.25 0.25
‘ 11 — — —= — lo.25 0.25 0.10 0.25[0.25 0.25 0.25 0.25
12 — — - - |o0.25 0.25 0.25 0.250.25 0.25 0.25 0.25
. 18 — —  — - |o0.25 0.25 0.25 0.250.25 0.25 0.25 0.25
| 21 — = - — |o0.25 0.25 0.25 0.25|0.25 0.25 0.25 0.25 |
i‘{ 23 - — —=  — |o0.25 0.25 0.25 0.25 |0.25 0.25 0.25 0.25 j
. 24 - == —= — |0.25 025 — - |0.25 0.25 — - %
| 25 — — - — |o0.10 0.25 0.25 0.250.05 0.10 0.25 0.25 j
NOR 1 - — — - {025 0.25 — - }0.25 0.25 0.25 — g
4 —- —- — - l025 — - - |0.02 025 — - 1
6 | - -~ — - |0.25 025 0.25 0.25] — - - - f
: EPOCS 6 | 0.25 0.25 - -- | 0.25 0.25 0.25 0.25|0.25 0.25 0.25 0.25 '
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Table B.13
xz-Independence Test Results
»
Dis?ribution of critical levels by 4 range for depth
regimes and separations for all YVETTE stations.
1
»
8 20.20 0.20>®0.10 0.10>6>0.05 0.05>620.02 0.02X%>0.01 & <0.01 TOTAL
Lz=2 3 1 0 0 0 ) 4
') 4 3 1 0 0 0 0 4
ML 8 2 0 0 0 0 0 2
16 1 0 0 0 0 0 1
D Az=2 14 1 0 0 0 0 15
ur 4 14 0 0 0 0] 0 14
8 11 1 0 0 0 0 12
16 11 0 0 0 0 0 11
o
Az=2 12 0 1 1 0 0 14
DL 4 13 1 0 1 0 0 14
8 11 1 0 0 0 0 12
L 16 11 0 0 0 0 0 11
TOTAL 106 6 1 1 0 0 114
®
@
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éf Table B.14
Smirnov Identical Distributions Test Results

Critical levels for profiles from all YVETTE stations.

: DEPTH REGIME = ML UT DL
r
| SEPARATIONS = 2 4 8 16 2 4 8 16 2 4 8 16
- YVETTE 05 | 0.05 0.20 — -- | 0.20 0.20 0.20 - [0.20 0.20 0.20 0.20
08 | 0.20 0.20 0.20 0.20 { 0.20 0.20 0.10 0.100.20 0.20 0.20 0.20
' 09 | 0.20 0.20 0.20 -- | 0.20 0.20 0.20 0.20]0.20 0.20 0.20 0.20
2 10 ~ - =  — | o0.20 0.20 0.20 0.20[0.20 0.20 0.20 0.20
- 11 —~ — — — 0.0 0.20 0.20 0.20{0.20 0.20 0.20 0.20
! 12 —~ — - — |0.20 0.20 0.20 0.20|0.20 0.20 0.20 0.20
, 18 — — —- — ] 0.20 0.20 0.20 0.20[0.20 0.20 0.20 0.20
» 21 —~ — — — |o0.20 0.20 0.20 0.20{0.20 0.20 0.20 0.20
| | 23 ~ =~ - — | 0.20 0.20 0.20 0.20/0.20 0.20 0.20 0.20
arl 24 —_ = = — ]0.20 0,20 — - {0.20 0.20 —  --
! 25 -~ == - — | 0.20 0.20 0.20 0.20]0.20 0.20 0.20 0.20
l NR 1 - —- — —]0.2 020 - - |0.20 0.20 0.20 —
4 - —- —~ —~1020 - — -—-102 020 — -
6 — -~ — = ]0.20 020 0.10 0.20] — - = -
EPOCS 6 | 0.20 0.20 — - | 0.20 0.20 0.20 0.20]0.20 0.20 0.20 0.20
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P/ ASS

Distribution of 4§ for depth regimes and separations
from all YVETTE stations.

6 20.20 0.20>80.10 0.10>4>0.05 0.05>6>0.02 0.02>§>0.01 4 <0.01 TOTAL

Az=2 3

4 4

ML 8 2
16 1
Az=2 14
uT 4 14
8 10

16 10
Az=2 14
bL 4 14
8 12

16 11
TOTAL 109

= N O o O O O

B O O O O

Table B.15
Smirnov Identical Distributions Test Results

o ©o o o o 0o o ~
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15
14
12
11

14
14
12
11
114
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